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This paper presents a solution to the boundary stabilization of a beam in free transverse
vibration. The dynamics of the beam are presented by a non-linear partial di!erential equation
(PDE). A linear control law is constructed to stabilize the beam. The control force consists of
feedback from the slope and velocity at the boundary of the beam. The novelty of this article is
that it has been possible to stabilize exponentially a free transversely vibrating beam via
boundary control without resorting to truncation of the model

( 2001 Academic Press
1. INTRODUCTION

This article describes how a vibrating beam can be made exponentially stable by using
boundary control. The article is limited to free vibrating beams. The vibration occurs in the
transverse direction of the beam; hence, the bending sti!ness of the beam must be included
in the discussion. The novelty of this article is that it is possible to stabilize exponentially
a transversely vibrating beam by using boundary control. That is, all control input is
applied at one end of the beam. The required measurements are the slope and velocity at the
boundary of the beam.

This research is motivated by the industrial interest in active control of vibrating slender
bodies. Examples of practical applications where tensioned beams are exposed to
undesirable transverse vibrations are: pretensioned marine risers used in o!-shore oil and
gas exploration, free hanging underwater pipelines, and drill strings for oil and gas
exploration.

Boundary control is an e$cient method to exclude the e!ect of both observation and
control spillover [1, 2]. A brief review of boundary control is given in reference [3].
Boundary control of #exible systems has been studied by several researchers. In
references [4}6], it is shown that feedback from the velocity at the boundary of a string can
stabilize the vibration in the string. In reference [7], the asymptotic and exponential
stability of an axially moving string is proved by using linear and non-linear state feedback
boundary control respectively. It is proved that, in non-linear feedback case, the mechanical
energy of the system decreases exponentially. In reference [3], a boundary feedback state
is used to control the vibration of an axially moving string. The feedback state includes
only the displacement, velocity and slope on the right-hand side of the string. In both [7, 3]
0022-460X/01/090613#10 $35.00/0 ( 2001 Academic Press
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the control laws are implemented via a mass}damper}spring on the right-hand side of the
string. In reference [8], a control strategy, called direct strain feedback, is used to control
the vibration of a #exible arm which is modelled as a beam. This control law introduces
damping into the governing equation and thus attenuates the vibration. The semigroup and
operator theory are used to prove the stability of the system. In reference [9], a control law
consisting of feedback from shear force at the root end of an elastic arm is used to control
the vibration of the arm. Exponential stability of the closed-loop system is shown.

The novelty of this article is that it has been possible to stabilize a free transversely
vibrating beam exponentially via boundary control without resorting to truncation of
model. Exponential stability has been proved using a Lyapunov functional.

This paper is arranged as follows: in Section 2 the dynamics of a vibrating beam is
presented. Section 3 is devoted to mathematical preliminaries. The boundary control law is
derived and exponential stability of the beam is proved in section 4. This paper concludes
with some remarks regarding implementation.

2. EQUATIONS OF MOTIONS

The dynamic equation of motion of a modi"ed, non-linear Euler}Bernoulli beam with
axial tension P (x, t) and transverse force density f (x, t) can be written as follows:
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∀(x, t)3 (0, ¸)][0,R) , g(x, t) represents the transverse displacement, f (x, t) is the external
transverse force distribution on the beam, EI is the beam's sti!ness or #exural rigidity and
oA is the weight per unit length. Both EI and oA are assumed to be constant throughout
this article. Note that the axial tension P (x, t) is a function of both time and space. This
occurs frequently in practical situations; for instance, pretensioned marine risers exposed to
axial wave and current loads. The discussion will be limited to freely vibrating beams; hence
f (x, t) is set to zero. In equation (1), notations g

tt
(x, t)"L2g (x, t)/Lt2 , g
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L2g(x, t)/Lx2 and g
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(x, t)"Lg (x, t)/Lx are used. A beam with its dynamic and geometric

boundary conditions is shown in Figure 1.
The axial strain}displacement relationship is given by
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where E is the Young modulus and A is the cross-sectional area of the beam. P
0

is the
constant axial pretension at the boundary x"¸. Equation (2) has been used in
the literature to describe the variation of tension along the length of a string [6, 10].
In this paper, only the elongation of the beam due to bending is considered. The variation of
the length of the beam due to axial force is assumed to be small and negligible. Substitution
of equation (2) into equation (1), setting f (x, t)"0 and carrying out the di!erentiation
gives
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which describes the free vibration of the beam subjected to axial tension. The boundary
conditions are
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Figure 1. A beam in bending vibration with axial tension.
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where the boundary condition (4a) represents the bending moments at the boundaries.
Equation (4c) denotes the shear force at x"¸ of the beam and u (t) represents the boundary
control force applied at x"¸. The boundary condition (4c) represents the balance of the
shear force and the control force u(t). The initial conditions are

g (x, 0)"g
1
(x), g

t
(x, 0)"g

2
(x) (5, 6)

for all (x, t)3(0, ¸)][0,R). Equations (5, 6) denote the initial position and velocity
functions respectively.

The main goal of this paper is to construct a control law, u(t), which stabilizes the
non-linear equation of the beam equations (3) and (4a}c) and guarantees that g (x, t)P0
exponentially as tPR for all x3[0, ¸].

The following assumption will be made:

(1) P
0
'0 for all t*0. This assumption simply means that an axially tensioned beam is

considered. When P
0
(0 a compressed beam will be considered, but this is not within

the scope of this paper.

3. PRELIMINARIES

In order to apply Lyapunov's stability theorem to distributed parameter systems it is
necessary to introduce some de"nitions. Furthermore, a theorem on which the stability
proof is based will be presented.

Consider a dynamic system whose state at any "xed time t is speci"ed by q(t), an element
of a state space C on which a metric o is de"ned. The distance between two arbitrary states
q and q@ in C at time t is speci"ed by o(q (t), q@(t)). These two states are regarded as identical
when o (q(t), q@(t))"0. For a distributed parameter dynamic system de"ned on a spatial
domain X, q corresponds to a set of real-valued function Mu

i
(x, t)N, i"1,2,N de"ned

in X, or an element of a function space C (X), where x is the spatial coordinate vector
(de"ned in X).

De5nition 1. An equilibrium state q
eq

of a dynamic system is an element of the state-space
C such that o (/ (t, t

0
)q

eq
, q

eq
)"0 for all t*0 (the distance of its corresponding trajectory

to that state is zero), where / (t, t
0
) is a continuous operator on C, and for any "xed [t, t

0
]

it maps C into itself. The set of all equilibrium states will be called the equilibrium
set.

De5nition 2. An invariant set M of a dynamic system is a subset of C so that for any initial
state q (t

0
)3M, its corresponding trajectory will remain in C for all t*t

0
.
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De5nition 3. An asymptotically invariant set, M, of a distributed parameter dynamic
system is uniformly asymptotically stable if

o (/(t, t
0
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), MP0 as t!t

0
P#R

uniformly with respect to t
0
*0 when o(q (t

0
), M(d

2
, where d

2
'0 is su$ciently small

and /(t, t
0
)q (t

0
) is the solution of the dynamic system at time t, starting at t

0
.

De5nition 4. A stable invariant set, M, of a distributed parameter dynamic system is
exponentially stable if o(/ (t, t

0
)q(t

0
), M) tends exponentially to zero for all t*0.

The following theorem is taken from reference [11] and readers are referred to this
reference for proof of the theorem. A similar theorem for asymptotic stability of distributed
parameter system is given in reference [12].

Theorem 1 (Zubov [11]). In order for an invariant set M a dynamic system to be stable it is
necessary and su.cient that there exist a one-parameter family of functions <(t), having the
following properties:

1. On any element q3S there is de,ned a function <(q, t) of the real argument t, de,ned for
t*t

0
, where

S"Mq3C D0(o (q, M )(rN.

2. For any su.ciently small c
1
'0 it is possible to ,nd a quantity c

2
'0 such that

<(q, t)'c
2

for o(q (t
0
), M )'c

1
and all t*0.

3. <(q, t)P0 uniformly relative to t*0 as o (q, M)P0.
4. ¹he functional < (t) evaluated along the solution of the system does not increase for all

t*t
0

for which it is de,ned, <Q (t))0.
5. Furthermore, if the functional <(t) evaluated along the solution of dynamic system tends

to zero at tP#R for all t
0
*0 and o (q, M)(d

1
, where d

1
'0 is su.ciently small,

then the invariant set of the dynamic system will be asymptotically stable, and, conversely,
if the invariant set is asymptotically stable, this holds, <Q (t))0.

Note that Item 2 in the above theorem indicates positive de"niteness of the function
<(q, t). Item 3 requires that the function <(q, t) admit an in"nitesimally upper limit. To
prove stability of an underlying distributed parameter system one has to show that there
exists a functional with the following properties:

1. the functional is positive de"nite with respect to a speci"ed metric;
2. the functional admits an in"nitesimally upper limit; and
3. the time derivative of the functional along the solutions of the underlying system is

negative de"nite.

4. DESIGN OF BOUNDARY CONTROL LAW

The control objective is to design a control law which guarantees the stability of
a continuous system consisting of equations (3) and (4a}c), using the boundary control
equation (4c). Assumption 1 will be used throughout the paper to establish the stability
property of the system when designing the control law. The following Lyapunov function is
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introduced:
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∀t*0, where c is a small positive constant real number and g () , )) satis"es the
boundary-value problem, equations (3) and (4a}c). A metric is de"ned as
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where qT"[g
t
g
x
g
xx

]. The metric o(q, 0) establishes a measure of the closeness of the state
q to the equilibrium null state in terms of the velocity, curvature and slope of the beam. In
addition, the metric o corresponds to a measure of the total energy of the system; more

speci"cally, o (q, 0) corresponds to J2E(t), where E (t) is the total energy of the system. The
"rst term represents the kinetic energy, the second and third terms represent the potential
energy due to the axial force and the last term represents the potential energy due to
bending.

Theorem 2. ¸et the boundary control law u(t), equation (4c), be
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where c
1
"¸max(1, oA/P

0
). Hence, the transversal displacement, velocity and slope will

exponentially tend to zero.

Note that feedback gain from slope, K
1
, might possess bounded negative values. To

prove the theorem it is "rst necessary to establish two lemmas.

Lemma 1. ¸et c in equation (7) satisfy
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∀t*0. Furthermore, <(t) is positive de,nite with respect to metric o (q, 0) and admits an
in,nitesimally upper limit.

Proof. The following inequality is valid:
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∀t*0, where the second inequality is obtained using the following inequality:
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Hence, equation (7) can be written as
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In a similar way the left-hand side of inequality (14) can be proved.
It is clear from the de"nition of the metric o (q, 0) (equation (8)) that o (q, 0) is positive

de"nite; hence, from inequality (14) and with c satisfying the inequality (13), it is concluded
that the functional <(t) is also positive de"nite. The right-hand side of inequality (14)
indicates that the functional<(t) has an upper limit which is given by (1#cc

1
)o2(q, 0). K

The derivative of equation (7) with respect to time is given by (for the sake of simplicity
the argument (x, t) is omitted)
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Substitution of oAg
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from equation (3) into equation (15) yields
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Before embarking on the further analysis some identities are proven.

Lemma 2. Let g (x, t) satisfy the boundary-value problem, (equations (3) and (4a}c)) then
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Proof. The proof is straightforward by applying integration by parts and will not be given
here. K
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Now using the results of Lemma 2 and collecting all terms, an expression for <Q (t) is
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From the boundary condition (4b), g
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Theorem 2 may now be proved. K
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Proof of Theorem 2. Substitution of the control law equation (9) into equation (18) and
collecting terms yield
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Selecting control gains K
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and K
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according to equations (10a) and (10b) renders <Q (t)
negative de"nite and hence,
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By the comparison lemma [13], inequality (11) the theorem is proven. From inequality (11),
using inequalities (13) and (14), it is easy to obtain inequality (12). Consequently, the slope
g
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(x, t) and the velocity g
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(x, t) will exponentially go toward zero at tP0 for all x3[0, ¸].
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Thus, the de#ection g(x, t) will also converge exponentially to zero as tP0 for all x3[0, ¸]
since g (0, t) for all t*0. K

4.1. IMPLEMENTATIONAL ASPECT OF THE CONTROLLER

The boundary feedback controller equation (9) consists of feedback from the slope and
velocity on the right-hand side of the beam. An implementation of this controller should be
made non-dimensional with dimensional upscaling of the control signal. This will improve
the numerics and make the control performance comparable with other controllers.

5. CONCLUSION

A boundary control law is designed to stabilize the transversal vibration of a beam
exponentially. Exponential stability is proved by using a Lyapunov functional. It has been
shown that the mechanical energy of the system will go exponentially toward zero. Since the
control law consists only of feedback from the slope and velocity of the beam at the
boundary, measurement cost is minimized and deterioration e!ect of spillover phenomena
are avoided.
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